Nie masz czasu na szukanie?

71 353 52 51 Centrala Obsługi Klienta

biuro@prolearning.pl

Pobierz PDF Pobierz DOC Formularz na szkolenie

Formularz na egzamin

5 +
= 10

MS-20773 Analyzing Big Data with Microsoft R

Program szkolenia

Module 1: Microsoft R Server and R ClientExplain how Microsoft R Server and Microsoft R Client work.Lessons

  • What is Microsoft R server
  • Using Microsoft R client
  • The ScaleR functions

Lab : Exploring Microsoft R Server and Microsoft R Client

  • Using R client in VSTR and RStudio
  • Exploring ScaleR functions
  • Connecting to a remote server

After completing this module, students will be able to:

  • Explain the purpose of R server.
  • Connect to R server from R client
  • Explain the purpose of the ScaleR functions.

Module 2: Exploring Big DataAt the end of this module the student will be able to use R Client with R Server to explore big data held in different data stores.Lessons

  • Understanding ScaleR data sources
  • Reading data into an XDF object
  • Summarizing data in an XDF object

Lab : Exploring Big Data

  • Reading a local CSV file into an XDF file
  • Transforming data on input
  • Reading data from SQL Server into an XDF file
  • Generating summaries over the XDF data

After completing this module, students will be able to:

  • Explain ScaleR data sources
  • Describe how to import XDF data
  • Describe how to summarize data held in XCF format

Module 3: Visualizing Big DataExplain how to visualize data by using graphs and plots.Lessons

  • Visualizing In-memory data
  • Visualizing big data

Lab : Visualizing data

  • Using ggplot to create a faceted plot with overlays
  • Using rxlinePlot and rxHistogram

After completing this module, students will be able to:

  • Use ggplot2 to visualize in-memory data
  • Use rxLinePlot and rxHistogram to visualize big data

Module 4: Processing Big DataExplain how to transform and clean big data sets.Lessons

  • Transforming Big Data
  • Managing datasets

Lab : Processing big data

  • Transforming big data
  • Sorting and merging big data
  • Connecting to a remote server

After completing this module, students will be able to:

  • Transform big data using rxDataStep
  • Perform sort and merge operations over big data sets

Module 5: Parallelizing Analysis OperationsExplain how to implement options for splitting analysis jobs into parallel tasks.Lessons

  • Using the RxLocalParallel compute context with rxExec
  • Using the revoPemaR package

Lab : Using rxExec and RevoPemaR to parallelize operations

  • Using rxExec to maximize resource use
  • Creating and using a PEMA class

After completing this module, students will be able to:

  • Use the rxLocalParallel compute context with rxExec
  • Use the RevoPemaR package to write customized scalable and distributable analytics.

Module 6: Creating and Evaluating Regression ModelsExplain how to build and evaluate regression models generated from big dataLessons

  • Clustering Big Data
  • Generating regression models and making predictions

Lab : Creating a linear regression model

  • Creating a cluster
  • Creating a regression model
  • Generate data for making predictions
  • Use the models to make predictions and compare the results

After completing this module, students will be able to:

  • Cluster big data to reduce the size of a dataset.
  • Create linear and logit regression models and use them to make predictions.

Module 7: Creating and Evaluating Partitioning ModelsExplain how to create and score partitioning models generated from big data.Lessons

  • Creating partitioning models based on decision trees.
  • Test partitioning models by making and comparing predictions

Lab : Creating and evaluating partitioning models

  • Splitting the dataset
  • Building models
  • Running predictions and testing the results
  • Comparing results

After completing this module, students will be able to:

  • Create partitioning models using the rxDTree, rxDForest, and rxBTree algorithms.
  • Test partitioning models by making and comparing predictions.

Module 8: Processing Big Data in SQL Server and HadoopExplain how to transform and clean big data sets.Lessons

  • Using R in SQL Server
  • Using Hadoop Map/Reduce
  • Using Hadoop Spark

Lab : Processing big data in SQL Server and Hadoop

  • Creating a model and predicting outcomes in SQL Server
  • Performing an analysis and plotting the results using Hadoop Map/Reduce
  • Integrating a sparklyr script into a ScaleR workflow

After completing this module, students will be able to:

  • Use R in the SQL Server and Hadoop environments.
  • Use ScaleR functions with Hadoop on a Map/Reduce cluster to analyze big data.

Wymagania

In addition to their professional experience, students who attend this course should have:

  • Programming experience using R, and familiarity with common R packages
  • Knowledge of common statistical methods and data analysis best practices.
  • Basic knowledge of the Microsoft Windows operating system and its core functionality.

Working knowledge of relational databases.

Referencje

"Szkolenie MS-10972 Administering the Web Server (IIS) Role of Windows Server,które odbyło się w dniach: 11-15.01.2016 „Jako uczestnik szkolenia, mogę szczerze polecić je każdemu zainteresowanemu. Świetna organizacja od strony logistycznej.…"

Ceneo

więcej

"W dniach 13-14, 15-16, 20-21.02.2017r. firma ProLearning przeprowadziła zaawansowane szkolenie z obsługi programu EXCEL 2013 dla pracowników firmy QuickService Logistics Polska Sp. z o.o. spółka komandytowa w…"

QuickService Logistics

więcej
więcej referencji

Ostatnio przeglądane

Słowa kluczowe

20773, ms20773, ms-20773, Microsoft, szkolenie, course, Big Data, R, Analyzing
  • Nasze certyfikacje

  • Microsoft
  • Oracle
  • Certiport
  • Pearson Vue

Kurs:

Czas trwania:
Liczba godzin dziennie:
Liczba dni:
Lokalizacja:
Termin
Cena netto :

Twoje dane

- Zobacz regulamin
×

Prosimy o uzupełnienie poniższego formularza w celu zapisu na wybrane egzaminy.

Kod * Nazwa * Data * Godzina Opcja
+

Twoje dane

- Zobacz regulamin
×