Nie masz czasu na szukanie?

71 353 52 51 Centrala Obsługi Klienta

biuro@prolearning.pl

Pobierz PDF Pobierz DOC Formularz na szkolenie

Formularz na egzamin

6 +
= 10

MS-20773 Analyzing Big Data with Microsoft R

Program szkolenia

Module 1: Microsoft R Server and R ClientExplain how Microsoft R Server and Microsoft R Client work.Lessons

  • What is Microsoft R server
  • Using Microsoft R client
  • The ScaleR functions

Lab : Exploring Microsoft R Server and Microsoft R Client

  • Using R client in VSTR and RStudio
  • Exploring ScaleR functions
  • Connecting to a remote server

After completing this module, students will be able to:

  • Explain the purpose of R server.
  • Connect to R server from R client
  • Explain the purpose of the ScaleR functions.

Module 2: Exploring Big DataAt the end of this module the student will be able to use R Client with R Server to explore big data held in different data stores.Lessons

  • Understanding ScaleR data sources
  • Reading data into an XDF object
  • Summarizing data in an XDF object

Lab : Exploring Big Data

  • Reading a local CSV file into an XDF file
  • Transforming data on input
  • Reading data from SQL Server into an XDF file
  • Generating summaries over the XDF data

After completing this module, students will be able to:

  • Explain ScaleR data sources
  • Describe how to import XDF data
  • Describe how to summarize data held in XCF format

Module 3: Visualizing Big DataExplain how to visualize data by using graphs and plots.Lessons

  • Visualizing In-memory data
  • Visualizing big data

Lab : Visualizing data

  • Using ggplot to create a faceted plot with overlays
  • Using rxlinePlot and rxHistogram

After completing this module, students will be able to:

  • Use ggplot2 to visualize in-memory data
  • Use rxLinePlot and rxHistogram to visualize big data

Module 4: Processing Big DataExplain how to transform and clean big data sets.Lessons

  • Transforming Big Data
  • Managing datasets

Lab : Processing big data

  • Transforming big data
  • Sorting and merging big data
  • Connecting to a remote server

After completing this module, students will be able to:

  • Transform big data using rxDataStep
  • Perform sort and merge operations over big data sets

Module 5: Parallelizing Analysis OperationsExplain how to implement options for splitting analysis jobs into parallel tasks.Lessons

  • Using the RxLocalParallel compute context with rxExec
  • Using the revoPemaR package

Lab : Using rxExec and RevoPemaR to parallelize operations

  • Using rxExec to maximize resource use
  • Creating and using a PEMA class

After completing this module, students will be able to:

  • Use the rxLocalParallel compute context with rxExec
  • Use the RevoPemaR package to write customized scalable and distributable analytics.

Module 6: Creating and Evaluating Regression ModelsExplain how to build and evaluate regression models generated from big dataLessons

  • Clustering Big Data
  • Generating regression models and making predictions

Lab : Creating a linear regression model

  • Creating a cluster
  • Creating a regression model
  • Generate data for making predictions
  • Use the models to make predictions and compare the results

After completing this module, students will be able to:

  • Cluster big data to reduce the size of a dataset.
  • Create linear and logit regression models and use them to make predictions.

Module 7: Creating and Evaluating Partitioning ModelsExplain how to create and score partitioning models generated from big data.Lessons

  • Creating partitioning models based on decision trees.
  • Test partitioning models by making and comparing predictions

Lab : Creating and evaluating partitioning models

  • Splitting the dataset
  • Building models
  • Running predictions and testing the results
  • Comparing results

After completing this module, students will be able to:

  • Create partitioning models using the rxDTree, rxDForest, and rxBTree algorithms.
  • Test partitioning models by making and comparing predictions.

Module 8: Processing Big Data in SQL Server and HadoopExplain how to transform and clean big data sets.Lessons

  • Using R in SQL Server
  • Using Hadoop Map/Reduce
  • Using Hadoop Spark

Lab : Processing big data in SQL Server and Hadoop

  • Creating a model and predicting outcomes in SQL Server
  • Performing an analysis and plotting the results using Hadoop Map/Reduce
  • Integrating a sparklyr script into a ScaleR workflow

After completing this module, students will be able to:

  • Use R in the SQL Server and Hadoop environments.
  • Use ScaleR functions with Hadoop on a Map/Reduce cluster to analyze big data.

Wymagania

In addition to their professional experience, students who attend this course should have:

  • Programming experience using R, and familiarity with common R packages
  • Knowledge of common statistical methods and data analysis best practices.
  • Basic knowledge of the Microsoft Windows operating system and its core functionality.

Working knowledge of relational databases.

Referencje

"Firma Logintrans Sp. z o.o. pragnie podziękować Centrum Innowacji ProLearning za współpracę w zakresie organizacji szkolenia „Arkusz kalkulacyjny Google Docs” oraz wyrazić swoje uznanie dla profesjonalnego przygotowania oraz…"

Logintrans

więcej

"Credit Agricole Bank Polska S.A. niniejszym potwierdza, że firma Centrum Innowacji ProLearning przeprowadziła dla pracowników naszego banku szkolenia z zakresu tworzenia stron www (PHP, MySql) oraz znajomości…"

Credit Agricole Bank Polska S.A.

więcej
więcej referencji

Ostatnio przeglądane

Słowa kluczowe

20773, ms20773, ms-20773, Microsoft, szkolenie, course, Big Data, R, Analyzing
  • Nasze certyfikacje

  • Microsoft
  • Oracle
  • Certiport
  • Pearson Vue

Kurs:

Czas trwania:
Liczba godzin dziennie:
Liczba dni:
Lokalizacja:
Termin
Cena netto :

Twoje dane

- Zobacz regulamin
×

Prosimy o uzupełnienie poniższego formularza w celu zapisu na wybrane egzaminy.

Kod * Nazwa * Data * Godzina Opcja
+

Twoje dane

- Zobacz regulamin
×